

Submitted for the Missisquoi River Basin Association 2839 VT Route 105, East Berkshire, VT 05447 by Jeremy Deeds and Shana Stewart Deeds

to the Vermont Department of Environmental Conservation 1 National Life Dr., Main 2, Montpelier, VT 05620

Missisquoi River Basin Overview:

The Missisquoi River runs across the northwestern part of Vermont and into southern Quebec. The river begins in Lowell and flows approximately 80 miles into the Missisquoi Bay. The Missisquoi River watershed is comprised of forests, agricultural land, and some urban and suburban developments. At 25%, agriculture is the dominant non-forested land use land cover. The water quality in Missisquoi Bay is at risk due to the enrichment of nutrients from surrounding lands in the watershed and the toxic algae blooms that may result. The Missisquoi River watershed is currently the focus of several monitoring and restoration efforts by local, state and regional groups to identify nutrient sources and minimize nutrient input to the Missisquoi River and Bay.

Program Overview:

The Missisquoi River Basin Association (MRBA) is a non-profit organization focused on the restoration of the Missisquoi River and its tributaries. The Water Quality Monitoring program is a volunteer-run sampling program that takes place each summer throughout the Basin. Through partnership with the Vermont Department of Environmental Conservation's LaRosa Analytical Services Partnership Program, the MRBA has access to the State of Vermont's analytical laboratory to process and analyze the water samples taken in the field.

The goal of the monitoring project is multifaceted. This volunteer program allows community members to learn about the environment of the Missisquoi River Basin, conservation and restoration of this environment, and water quality sample collection with interpretation of the results. In addition, the program collects valuable data that may aid in the determination of specific problem areas on which to focus restoration efforts, and of whether past restoration efforts are working. The administrative costs of the water quality monitoring program were covered -in part by a 2013 Vermont Watershed grant.

Methods:

Trained citizen volunteers collect water samples biweekly at between 19 and 21 sites depending on the year. These sites are located throughout the Missisquoi River Basin, along the mainstem of the Missisquoi River and its tributaries. Refer to Table 1 for a list of sample sites, their corresponding site codes and the years they were sampled. Figures 1-3 show the location of each site labeled by their corresponding site code.

Table 1. List of MRBA sampling sites with site codes and sampling years.

Mainstem Sites	Code	Years
Westfield - Loop Rd - Below Mineral Springs Brook	M-WL	2005, 2006, 2007, 2008, 2009, 2010, 2011, 2012, 2013
Troy - Citizens Dam	M-TCD	2005, 2006, 2007
North Troy - Below Big Falls	M-NTBF	2005, 2006, 2007, 2008, 2009, 2010, 2011, 2012, 2013
East Richford - Near QC Border	M-ER	2005, 2006, 2007, 2008, 2009, 2010, 2011, 2012, 2013
Richford – below town, Davis Park	M-RDP	2005
Richford - Below North Branch Marvin Rd	M-RM	2006, 2007
East Berkshire - Below Trout River	M-EB	2005, 2006, 2007
Enosburg Falls - Lawyers Landing	M-ELL	2005
Enosburg Falls - Below Town	M-EF	2005, 2006, 2007, 2008, 2009, 2010, 2011, 2012, 2013
N.Sheldon - Above Black Creek - Kane Road	M-NS	2005, 2006, 2007
Sheldon Junction - Bridge	M-SJ	2005
Highgate - Dam at Highgate Falls	M-HD	2005, 2006, 2007
Swanton – above town Johns Bridge	M-SJB	2005
Swanton - Marble Mill - Below Dam	M-SMM	2005
Swanton - Monument Road	M-SMR	2005, 2006, 2007, 2008, 2009, 2010, 2011, 2012, 2013

Sites in blue averaged below 25 $\mu g/L$ Phosphorus in 2013

Sites in green had the highest average concentrations of Phosphorus in 2013 (greater than 50 $\mu\text{g}/\text{L})$

Tributary Sites	Code	Years
Lowell - Burgess Branch Route 58	T-LBB	2005, 2006, 2007, 2008, 2009, 2010, 2011, 2012, 2013
Troy - Jay Branch - Vielleux Road	T-TJB	2006, 2007, 2008, 2009, 2010, 2011, 2012, 2013
Newport Center - Mud Creek - Route 105	T-NCMC	2006, 2007, 2008, 2009, 2010, 2011, 2012, 2013
Newport Center – trib. to Mud Creek	T-NCTM	2008, 2009, 2010
North Troy - Mud Creek - Bear Mountain Road	T-NTMC	2005, 2006, 2007, 2008, 2009, 2010, 2011, 2012, 2013
Richford - North Branch - Pinnacle Road	T-RNB	2006, 2007, 2008, 2009, 2010, 2011, 2012, 2013
East Berkshire - Trout River - Near Mouth - Route 118	T-EBTR	2005, 2006, 2007, 2008, 2009, 2010, 2011, 2012, 2013
Enosburgh - Tyler Branch, Duffy Hill Road	T-ETBDH	2006, 2007, 2008, 2009, 2010, 2011, 2012, 2013
Enosburgh – Tyler Branch, Boston Post Rd.	T-ETYB	2008, 2009, 2010, 2011, 2012, 2013
Enosburgh – below Tyler Branch	T-EBTB	2005
Enosburgh – The Branch (Rt. 108)	T-ETB	2008, 2009, 2010, 2011, 2012, 2013
East Fairfield - Black Creek Ryan Rd.	T-EFBC	2007, 2008, 2009, 2010, 2011, 2012, 2013
Fairfield – Wanzer Brook	T-FFWZ	2008, 2009, 2010, 2011, 2012, 2013
Sheldon - Mouth of Black Creek - Bouchard Road	T-SBC	2005, 2006, 2007, 2008, 2009, 2010, 2011, 2012, 2013
Highgate - Hungerford Brook Route 207	Т-ННВ	2006, 2007
Sheldon – trib to Hungerford Bk Cook Rd.	T-SHCR	2008, 2009, 2010, 2011, 2012, 2013
Swanton – trib to Hungerford Woods Hill Rd.	T-THBW	2008, 2009, 2010, 2011, 2012, 2011, 2012, 2013
Swanton – Hungerford Bk Woods Hill Rd.	T-HBW	2008, 2009, 2010, 2013
Berkshire - Godin Brk Godin Rd	T-BGB	2011, 2012, 2013

Volunteers received training in accordance with the Quality Assurance Project Plan (QAPP) for taking grab samples for total phosphorus, total nitrogen, total suspended solids, and turbidity. Samples were kept cold, both during transport and storage, prior to analysis. Samplers also completed a field data sheet at each site noting not only who took the sample and where and when the sample was taken, but also parameters such as water flow and weather observations. The U.S. Environmental Protection Agency provided portable conductivity meters for volunteers to measure the conductivity at each site; the results were also recorded on the data sheet. In order to interpret the results from the State laboratory it was necessary to organize and manage the data using Microsoft Access® and Microsoft Excel®, which allowed for further geographic analysis in ESRI ArcGIS®.

Results and Discussion:

Figures 1-3 show sampling locations and results of the three water quality parameters measured (total phosphorus, total nitrogen and turbidity). The raw data for each parameter and sample event are presented in Appendix A. Figures 4-6 present mean values for the three parameters at each site ±1 standard error of the mean.

Mainstem total phosphorus (TP) data from 2013 was generally consistent with levels observed in 2012, though some slight increases are noted at sites M-EF, M-ER and M-SMR. Considerably less phosphorus was observed at site M-WL, down from a high phosphorus year in 2012 and more in line with the average concentration detected in 2011. M-NTBF was nearly the same in 2013 as in 2012. The site M-TCD was sampled in 2013 for the first time since 2007. This site showed the highest average phosphorus concentration of all sites, both mainstem and tributary, with an average value of 93.31 (\pm 25.74) µg/L. Only one mainstem site, M-WL (the most upstream mainstem site sampled), was below the Vermont ANR water quality standard of 25 µg/L TP for Missisquoi Bay of Lake Champlain. The average 2013 TP value observed at this location (M-WL - Loop Road crossing in Westfield, VT) was 18.30 (\pm 3.84) µg/L.

In 2012, only two tributary sites showed an average phosphorus value below 25 μ g/L, the Vermont Water Quality Standard for Missisquoi Bay. In 2013, seven tributary sites were below this threshold; this shows improvement in the watershed after the especially high phosphorus year of 2012. Once again, the tributary sites with the lowest average TP concentrations were in the upper, pre-Canada section of the mainstem (T-LBB, T-TJB), the east branch of the Trout River (T-EBTR) and in Tyler Branch (T-ETYB, T-ETB, T-ETBDH). T-RNB, on the North Branch in Richford, was the last tributary site that showed an average TP value of less than 25 μ g/L in 2013.

The Missisquoi watershed is approximately 25% agricultural land, and, among the all the Lake's watersheds, the Missisquoi Basin is the largest contributor of phosphorus to Lake Champlain (Troy et al., 2007). The 2012 data show that large amounts of TP in the basin originate mainly in the subwatersheds of Mud Creek (T-NCMC, T-NTMC), Hungerford Brook (T-SHCR, T-THBW, T-HBW), and Black Creek (T-EFBC, T-SBC).

There is no State water quality standard for total nitrogen (only for nitrate nitrogen: 5 mg/L NO_3^- in most state waters), so comparing these Missisquoi nitrogen data to established criteria is not possible. In general, portions of the watershed showing increased concentrations of total nitrogen

coincide with locations showing increased levels of phosphorus (Figs. 1, 2). This result of both nutrients increasing proportionately seems to indicate that the source of nutrient enrichment in the watershed is likely agricultural runoff, rather than urban development or wastewater treatment plant effluent alone, because these point sources tend to increase nitrogen dramatically more than phosphorous alone.

As with nutrients, average turbidity values (the degree to which light is scattered by particles suspended in the water) in the watershed were found to be generally lower in 2013 than in 2012. High values in 2012 were likely due to significant rain events. All mainstem sites had much lower average turbidity values in 2013 except for one: M-SMR (Monument Road in Swanton), which was slightly higher this year. The Missisquoi River mainstem below Enosburg Falls is a designated warm-water fishery, but no sites along this stretch of river exceeded the 25 NTU standard for this designation. All tributaries showed average turbidity values less than 10 NTU in 2013, which is the standard for cold water fisheries.

Figures 4-6 show the overall averages of all samples taken in the previous three years. The graphs represent mean values for each parameter at each site ±1 standard error of the mean. These figures show that, for many sites, water quality has remained relatively stable in the mainstem, but the tributaries show more susceptibility to yearly fluctuations in nutrient concentrations.

Often the median value (mid-point) of a set of data is described because it is less susceptible to being skewed towards one or two outliers in a dataset (i.e. being pulled one way or another by results from extreme sampling conditions such as data from the September 5th sampling event of 2012). In order to look at the MRBA data in this slightly different way, the yearly median TP values for all sites with data from the last eight years are presented in Figure 7. These graphs show the central tendency (represented by the data point) of TP values in each sampling year, with bars that show the extent of the 25th (low) and 75th (high) percentile values from each year. This way of looking at results may be helpful for identifying long-term trends in data with high variability such as the field measurements of water quality. It can be seen in the Figure 7 graphs that many of the long-term sampling sites are generally stable over time, despite some year-to year variability (M-ER, M-NTBF, M-WL, T-ETBDH, T-LBB, T-TJB, T-EBTR). Other sites show potentially increasing TP levels within the last couple of years (M-EF, T-NCMC). Further statistical analyses should be performed to draw additional conclusions about data trends over the past several years.

Conclusion:

The MRBA sampling program has proven to be a great success over the past nine years not only with data collection but also with education and outreach. Numerous samples have been collected and analyzed by over two dozen volunteers who sample every two weeks throughout the summer. These data have been very useful to MRBA and other organizations that target sites in need of water quality improvement projects due to high concentrations of nutrients and sediment. Some of these projects are already underway (or have been completed) in the Missisquoi River Basin. The MRBA Water Quality Monitoring Program hopes to continue collaboration with the Vermont DEC in 2014 to produce useful information for both entities and for all those working on the protection of water quality in the Basin.

References:

Troy, A., D. Wang, D. Capen, J. O'Neil-Dunne and S. MacFaden. 2007. Updating the Lake Champlain Basin Land Use Data to Improve Prediction of Phosphorus Loading Lake Champlain Basin Program. Lake Champlain Basin Program, Grand Isle, VT.

Vermont Department of Environmental Concentration. Biomonitoring database. Accessed February 24, 2011.

Vermont Water Quality Standards; Vt. Code R. 12 004 052; State of Vermont Natural Resources Board, Water Resources Panel. Effective March 17th, 2014. http://www.nrb.state.vt.us/wrp/publications/wqs.pdf

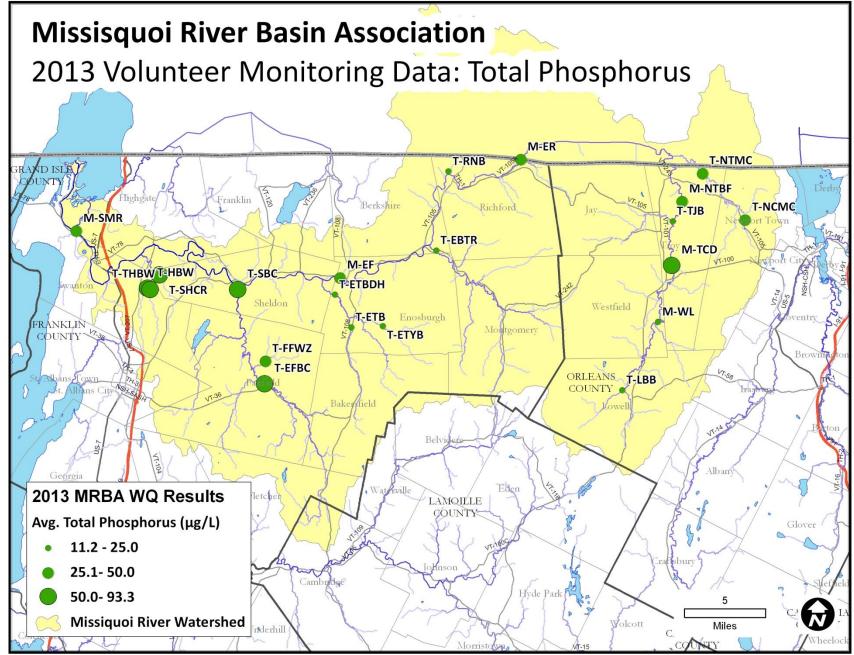


Figure 1: 2013 averages for total phosphorus (μg/L) at each sampling site. Larger dots indicate higher levels of nutrients. See Table 1 for site code names.

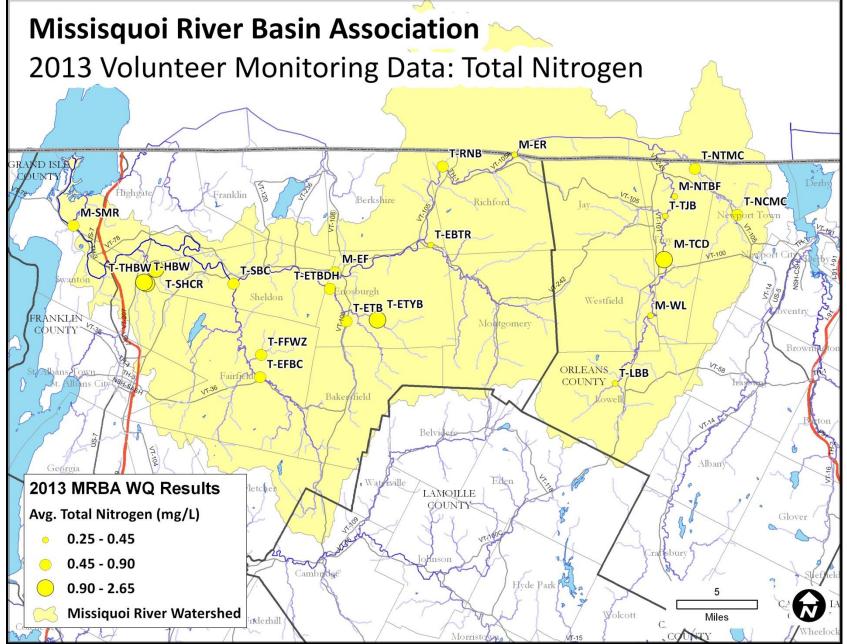


Figure 2: 2013 averages for total nitrogen (mg/L) at each sampling site. Larger dots indicate higher levels of nutrients. See Table 1 for site code names.

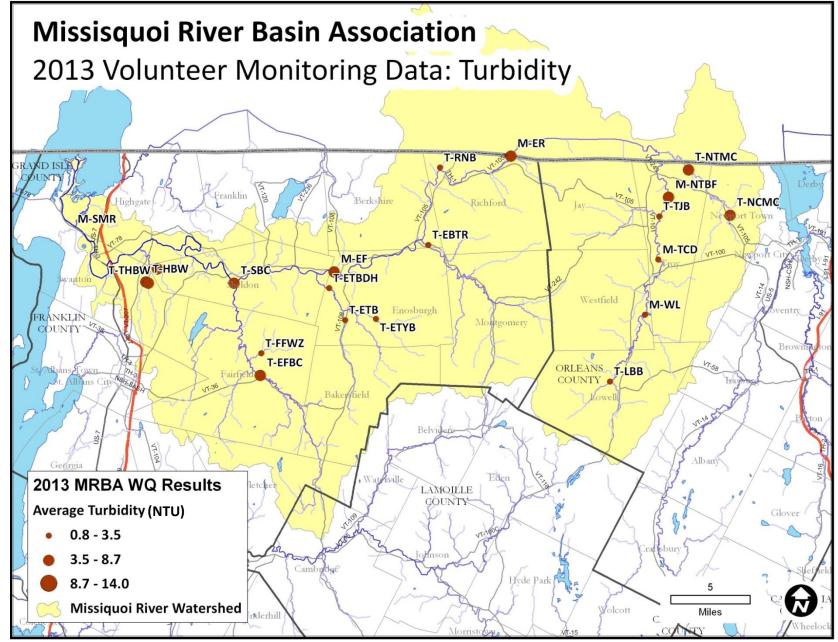


Figure 3: 2013 turbidity averages (Nephelometric Turbidity Units - NTU) at each sampling site. Larger dots indicate higher levels of turbidity. See Table 1 for site code names.

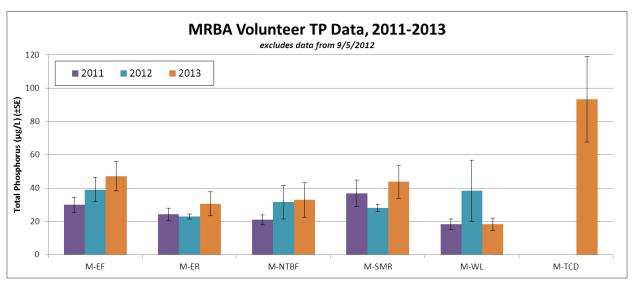


Figure 4a: Mainstem Missisquoi River averages for total phosphorus concentration in μg/L (±1 standard error) from 2011 to 2013. Data that reflect anomalous TP levels due to a storm event on September 5th, 2012 are omitted from this graph.

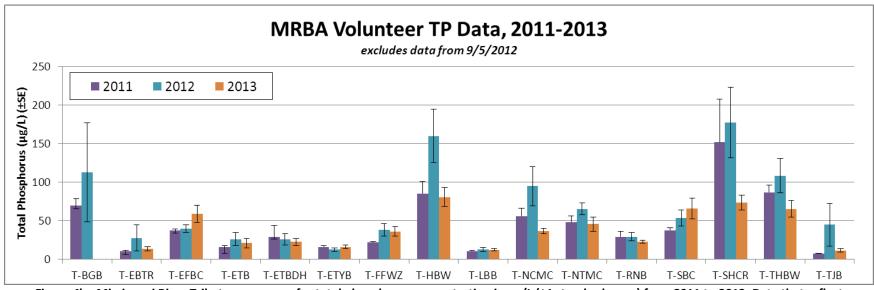


Figure 4b: Missisquoi River Tributary averages for total phosphorus concentration in μg/L (±1 standard error) from 2011 to 2013. Data that reflect anomalous TP levels due to a storm event on September 5th, 2012 are omitted from this graph.

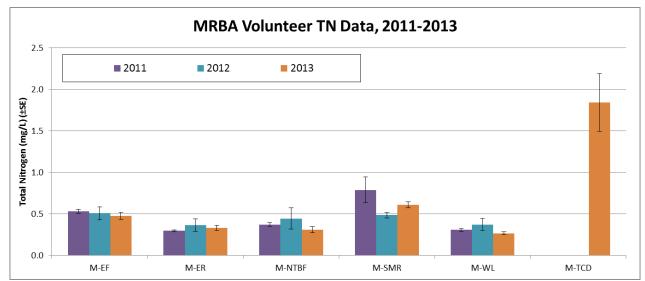


Figure 5a: Mainstem Missisquoi River averages for total nitrogen concentration in mg/L (± standard error) from 2011 to 2013.

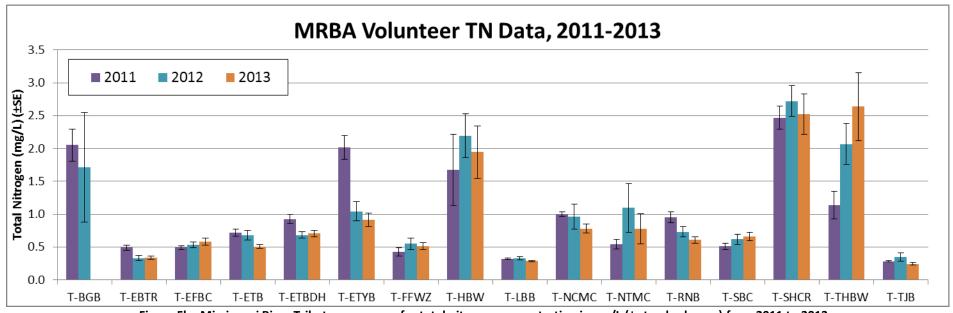


Figure 5b: Missisquoi River Tributary averages for total nitrogen concentration in mg/L (± standard error) from 2011 to 2013.

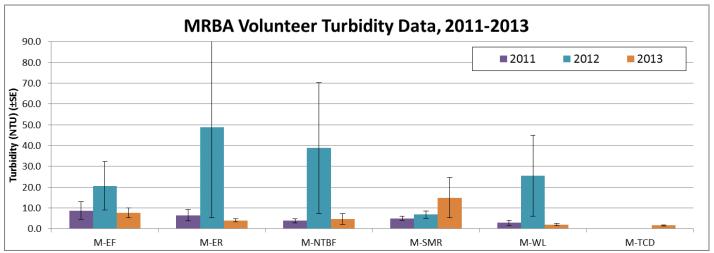


Figure 6a: Mainstem Missisquoi River averages for turbidity in NTU (± standard error) from 2011 to 2013.

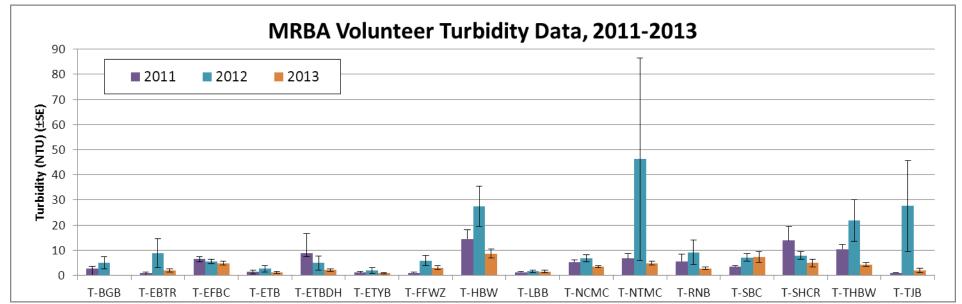


Figure 6b: Missisquoi River Tributary averages for turbidity in NTU (± standard error) from 2011 to 2013.

Figure 7 (a-m). Yearly median total phosphorus values for the 13 MRBA volunteer water quality monitoring sites with at least 8 years of data. Error bars indicate the 25th and 75th percentile distribution of the yearly data. "M" sites are mainstem and "T" sites are tributaries; see Table 1 for full site descriptions. Note that the scales vary between each graph.

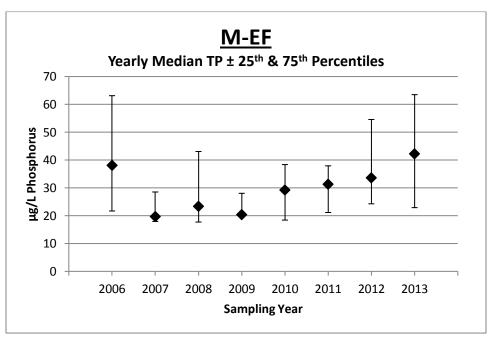


Fig 7a. Phosphorus (μg/L) by year.

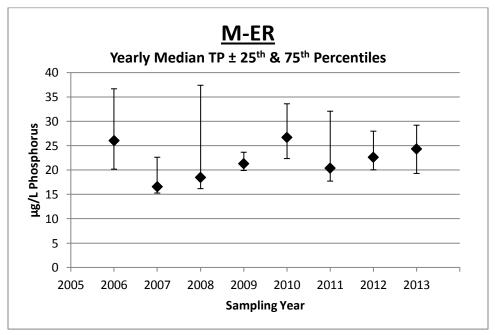


Fig 7b. Phosphorus (μg/L) by year.

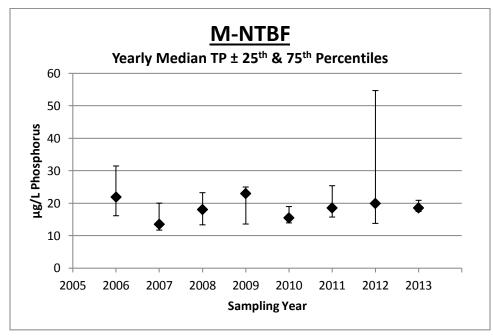


Fig 7c. Phosphorus (μ g/L) by year.

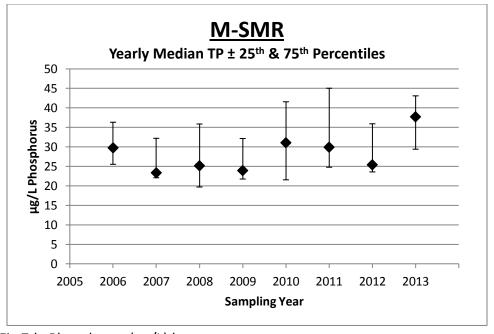


Fig 7d. Phosphorus (μg/L) by year.

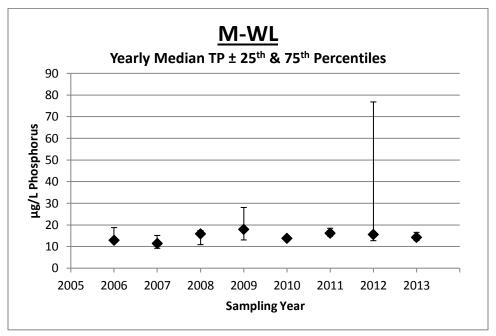


Fig 7e. Phosphorus (μg/L) by year.

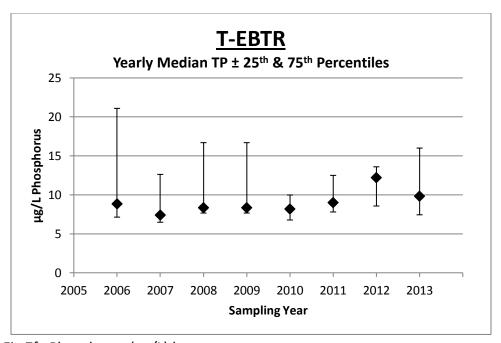


Fig 7f. Phosphorus (μ g/L) by year.

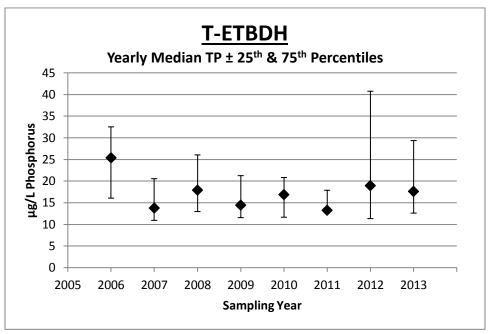


Fig 7g. Phosphorus (μg/L) by year.

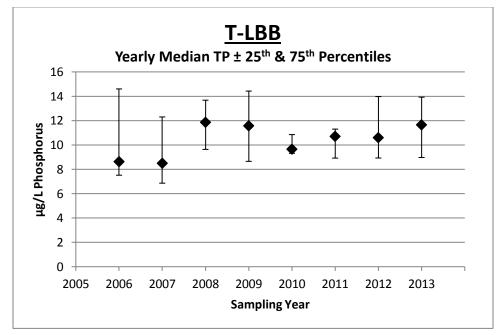


Fig 7h. Phosphorus (μg/L) by year.

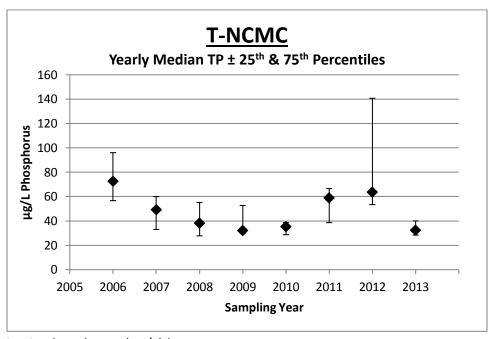


Fig 7i. Phosphorus (μg/L) by year.

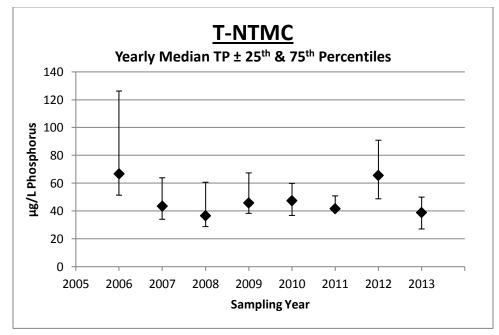


Fig 7j. Phosphorus (μ g/L) by year.

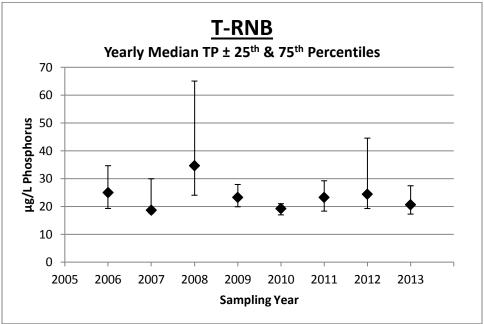


Fig 7k. Phosphorus (μ g/L) by year.

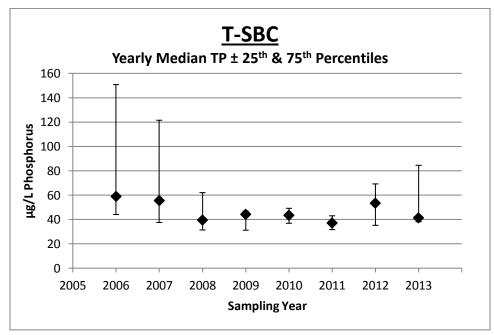


Fig 7I. Phosphorus (μg/L) by year.

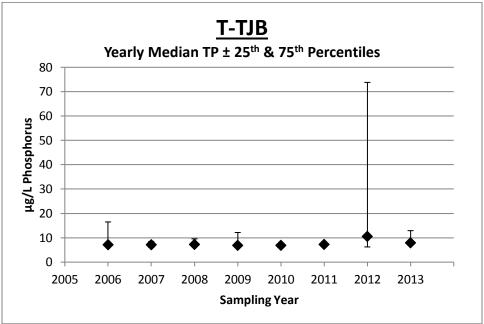


Fig 7m. Phosphorus (μg/L) by year.

Appendix A. 2013 MRBA Volunteer Water Quality Data

Total Phosphorus (μg/L)

Site Code	29-May	12-Jun	26-Jun	10-Jul	24-Jul	06-Aug	07-Aug	21-Aug	04-Sep	05-Sep	18-Sep	02-Oct	03-Oct	16-Oct	Site Averages
M-EF	77.3	66.4	42.3	108.0	55.1		24.6	21.2	27.9		60.6	18.6		16.5	47.1
M-ER	34.8	100.0	17.6	21.0	25.5		24.3	32.1	26.3		23.0	17.0		14.6	30.6
M-NTBF	18.6	85.8	18.1	116.0	20.2		17.4	14.9	17.5		20.6	21.2		11.9	32.9
M-SMR	37.7	43.6	42.6	31.5	45.7		33.5	27.3	21.3		37.7	20.7		141.0	43.9
M-TCD	47.0	193.0	99.7	60.8	312.0		80.3	64.1		54.9	47.8		26.0	40.8	93.3
M-WL	13.4	53.4	14.8	28.3	16.7		13.1	14.3	16.4		12.4	10.7		7.8	18.3
T-EBTR	10.8	26.1	11.7	31.7	20.3		7.4	7.5		9.8	7.8	7.4		5.0	13.2
T-EFBC	42.5	36.8	88.7	43.1	113.0	33.2		139.0	48.1		31.4	47.6		24.0	58.9
T-ETB	15.7	81.0	22.0	17.6	33.6		10.3	10.1	12.6		12.5	5.5		8.2	20.8
T-ETBDH	19.4	44.9	38.4	20.3	49.0		12.7	12.5	17.6		13.2	9.5		7.9	22.3
T-ETYB	13.3	30.0	20.8	15.3	32.2		11.9	10.0	12.6		11.5	9.0		9.0	16.0
T-FFWZ	31.2	55.9	59.3	55.2	61.9		15.4	24.0	18.1		27.1			12.1	36.0
T-HBW	62.2	141.0	145.0	74.7	56.6		67.1	89.3	126.0		61.0	31.0		32.2	80.6
T-LBB	12.2		11.7	25.2	14.5		8.3	8.6	11.6		9.6	8.8			12.3
T-NCMC	23.4	46.0	28.3	33.7	63.7		30.9	38.3	45.3		28.7	40.6		23.2	36.6
T-NTMC	36.8	122.0	47.7	50.8	57.7		39.8	23.9			37.8	18.6		18.8	45.4
T-RNB	17.2	23.9	17.3	20.6	32.0		20.2	31.0	32.5		17.1	23.6		12.2	22.5
T-SBC	41.4	82.0	175.0	108.0	87.0		46.4	27.6	36.7		39.7	36.7		41.4	65.6
T-SHCR	59.8	133.0	118.0	79.8	73.9		46.6	62.6	97.5		58.8	36.0		40.3	73.3
T-THBW	48.1	142.0	91.9	56.2	90.0		52.7	63.4	76.6		59.8	19.3		17.2	65.2
T-TJB	17.2	29.5	7.3	7.9	19.2		8.2	6.7	8.7		7.3	6.9		5.0	11.2
Averages:															
Mainstem	38.1	90.4	39.2	60.9	79.2		32.2	29.0	21.9	54.9	33.7	17.6	26.0	38.8	44.4
Tributaries	30.1	71.0	58.9	42.7	53.6	33.2	27.0	37.0	41.8	9.8	28.2	21.5		18.3	38.7

Total Nitrogen (mg/L)

Site Code	29-May	12-Jun	26-Jun	10-Jul	24-Jul	6-Aug	7-Aug	21-Aug	4-Sep	5-Sep	18-Sep	2-Oct	3-Oct	16-Oct	Site Average
M-EF	0.7	0.8	0.4	0.4	0.5		0.4	0.4	0.4		0.5	0.4		0.3	0.48
M-ER	0.4	0.6	0.3	0.2	0.3		0.4	0.3	0.4		0.4	0.3		0.2	0.33
M-NTBF	0.3	0.4	0.3	0.6	0.3		0.3	0.3	0.3		0.3	0.2		0.2	0.31
M-SMR	0.6	0.6	0.7		0.8		0.6	0.5	0.6		0.6	0.4		0.8	0.61
M-TCD	1.2	3.1	2.6	1.1	4.7		1.4	1.7		1.0	1.3		1.3	0.8	1.84
M-WL	0.3	0.4	0.3	0.3	0.3		0.3	0.3	0.3		0.3	0.2		0.2	0.27
T-EBTR	0.4	0.2	0.3	0.4	0.3		0.4	0.5		0.4	0.4	0.3		0.2	0.34
T-EFBC	0.6	0.4	0.6	0.6	0.9	0.4		0.8	0.6		0.5	0.5		0.4	0.58
T-ETB	0.5	0.4	0.4	0.4	0.5		0.6	0.7	0.6		0.5	0.6		0.4	0.51
T-ETBDH	0.8	0.5	0.6	0.7	0.7		0.8	1.0	0.8		0.7	0.8		0.5	0.71
T-ETYB	0.8	0.4	0.6	0.8	0.8		1.2	1.7	1.1		0.8	1.1		0.7	0.92
T-FFWZ	0.6	0.7	0.7	0.6	0.8		0.3	0.4	0.5		0.6	0.4		0.3	0.51
T-HBW	4.1	3.4	3.8	2.7	1.6		0.8	0.7	1.0		1.8	0.6		0.9	1.95
T-LBB	0.3		0.3	0.3	0.3		0.3	0.4	0.3		0.3	0.2			0.29
T-NCMC	0.8	1.4	0.7	0.6	0.7		0.8	0.7	0.8		0.7	0.8		0.6	0.78
T-NTMC	0.7	2.8	0.7	0.6	0.7		0.6	0.4			0.6	0.3		0.3	0.78
T-RNB	0.5	0.4	0.5	0.7	0.8		0.7	0.9	0.6		0.5	0.7		0.4	0.61
T-SBC	0.6	0.8	1.3	0.4	0.7		0.6	0.5	0.6		0.7	0.5		0.5	0.66
T-SHCR	3.2	5.0	2.4	2.6	2.6		1.9	1.3	1.4		3.0	2.2		2.0	2.53
T-THBW	5.8	2.9	4.7	3.8	3.1		0.8	0.6	0.5		3.0	1.7		2.2	2.64
T-TJB	0.3	0.3	0.3	0.2	0.3		0.3	0.3	0.3		0.3	0.1		0.1	0.24
Averages:															
Mainstem	0.6	1.0	0.8	0.5	1.1	-	0.6	0.6	0.4	1.0	0.5	0.3	1.3	0.4	0.6
Tributaries	1.3	1.4	1.2	1.0	1.0	0.4	0.7	0.7	0.7	0.4	1.0	0.7		0.7	0.9

Turbidity (NTU)

Site Code	29-May	12-Jun	26-Jun	10-Jul	24-Jul	6-Aug	7-Aug	21-Aug	4-Sep	5-Sep	18-Sep	2-Oct	3-Oct	16-Oct	Site Average
M-EF	24.2	8.6	22.1	4.1	2.6		3.6	1.5	7.7		2.9	3.7		3.0	7.64
M-ER	8.4	9.6	1.6	4.1	2.4		3.7	1.7	5.2		2.1	2.2		3.0	3.98
M-NTBF	4.1	7.5	1.3	30.1	1.4		1.6	0.9	1.4		1.2	1.0		1.1	4.68
M-SMR	11.3	3.6	9.8	3.4	5.4		6.5	1.7	3.9		3.3	3.1		112.0	14.90
M-TCD	1.5	2.5	3.9	0.8	3.0		1.5	0.5		1.3	1.0		0.6	0.6	1.54
M-WL	2.7	6.3	1.4	4.5	0.9		1.7	0.8	1.0		1.0	1.1		1.0	2.02
T-EBTR	1.9	2.7	1.2	7.7	4.4		0.3	0.3		1.0	0.3	0.4		0.6	1.88
T-EFBC	5.9	3.4	7.4	5.0	11.3	5.0		2.8	4.5		2.0	3.5		2.7	4.85
T-ETB	1.8	1.2	1.4	1.1	3.9		0.4	0.3	1.0		0.8	0.4		0.8	1.17
T-ETBDH	2.7	3.4	3.9	2.1	6.3		0.6	0.5	1.3		0.6	0.7		0.5	2.06
T-ETYB	0.6	1.8	2.7	0.9	1.5		0.2	0.3	0.5		0.3	0.3		0.4	0.85
T-FFWZ	5.4	5.0	6.6	7.5	4.0		0.6	0.5	0.7		1.0	1.4		0.9	3.05
T-HBW	5.9	7.4	8.1	14.1	4.6		13.8	14.8	18.6		2.9	2.6		2.6	8.67
T-LBB	1.9		1.0	5.3	1.2		0.9	0.4	1.2		0.8	0.6			1.46
T-NCMC	1.9	3.6	2.2	4.0	3.6		5.9	5.4	3.6		1.6	3.8		3.5	3.54
T-NTMC	7.2	7.9	4.8	6.4	7.0		4.8	1.2			2.9	2.6		3.4	4.81
T-RNB	2.6	2.7	1.4	2.1	4.7		3.1	4.7	5.2		1.1	1.5		1.5	2.78
T-SBC	9.2	7.6	27.5	5.4	4.8		7.3	2.2	5.0		3.3	2.3		5.3	7.24
T-SHCR	7.3	6.7	19.3	5.3	2.0		2.6	2.4	1.8	-	1.6	2.5		2.5	4.91
T-THBW	4.8	6.0	7.8	3.7	1.8		8.0	5.1	5.3		1.2	1.3		2.0	4.29
T-TJB	4.7	4.5	0.9	0.6	8.1		0.8	0.2	0.4		0.4	0.3		0.2	1.92
Averages:															
Mainstem	8.7	6.3	6.7	7.8	2.6		3.1	1.2	3.8	1.3	1.9	2.2	0.6	20.1	5.8
Tributaries	4.2	4.6	6.4	4.7	4.6	5.0	3.5	2.7	3.8	1.0	1.4	1.6		1.9	3.6